Subject: Mathematics Class:
Date: Due Date :
Student’s Name: ——————— ————————————————————-
Unit Title: Linear functions Task: Distance time graph of Ahmad and Hassan |
Statement of inquiry: Making appropriate relationships of equivalent ratios helps engineers to generalize the measurements discovered. |
ATL Self-Management /Thinking skills-Transfer |
In order for students to apply the selected mathematical strategies to reach a correct solution to find the meeting point of Ahmad and Hassan |
Task Specifications:
- You are not permitted access to any calculator for this task.
- Answer all questions on A4 papers using ‘Times new roman’ font 12 spacing 1.5.
- Graphs should be plotted both;
- On graph paper using a pencil 0.5mm
- Using technology (GeoGebra)
- Your work will be assessed based on criteria C and D. Refer to descriptors on the following pages.
Level:
Criterion C (Max 8) Criterion D (Max 8)
Comments:
………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………
………………………………………………………………………………………………………………………
Teacher’s signature: Supervisor ‘s / Leader’s signature:
Lvl. | Criterion C Communicating | Criterion D Applying mathematics in real-life contexts |
1-2 | The student is able to: use limited mathematical language use limited forms of mathematical representation to present information communicate through lines of reasoning that are difficult to interpret. | The student is able to: identify some of the elements of the authentic real-life situation apply mathematical strategies to find a solution to the authentic real-life situation, with limited success. |
3-4 | The student is able to: use some appropriate mathematical language use appropriate forms of mathematical representation to present information adequately communicate through lines of reasoning that are complete adequately organize information using a logical structure. | The student is able to: identify the relevant elements of the authentic real-life situation select, with some success, adequate mathematical strategies to model the authentic real-life situation apply mathematical strategies to reach a solution to the authentic real-life situation discuss whether the solution makes sense in the context of the authentic real-life situation. |
5-6 | The student is able to: usually use appropriate mathematical language usually use appropriate forms of mathematical representation to present information correctly usually move between different forms of mathematical representation communicate through lines of reasoning that are complete and coherent present work that is usually organized using a logical structure. | The student is able to: identify the relevant elements of the authentic real-life situation select adequate mathematical strategies to model the authentic real-life situation apply the selected mathematical strategies to reach a valid solution to the authentic real-life situation explain the degree of accuracy of the solution explain whether the solution makes sense in the context of the authentic real-life situation. |
7-8 | The student is able to: consistently use appropriate mathematical language use appropriate forms of mathematical representation to consistently present information correctly move effectively between different forms of mathematical representation communicate through lines of reasoning that are complete, coherent and concise present work that is consistently organized using a logical structure. | The student is able to: identify the relevant elements of the authentic real-life situation select appropriate mathematical strategies to model the authentic real-life situation apply the selected mathematical strategies to reach a correct solution to the authentic real-life situation justify the degree of accuracy of the solution justify whether the solution makes sense in the context of the authentic real-life situation. |
Ahmed and Hassan, who live 3 km away from their school, were waiting one morning at 7:00 am for the school bus. After 10 minutes Ahmed decided to walk to school while Hassan decided to wait. Walking at a constant speed, Ahmed arrived at precisely 8:10 am, he found Hassan already there. Hassan told him that the bus had arrived at 7:25 am and moving at a constant speed, reached school at 8:00 am.
- On a graph paper and on geogebra, using a scale of 1cm for 5 minutes on the horizontal-axis and 4cm for 1Km on the vertical-axis, model the situation above (both journeys).
- From your graph determine the following:
- The time at which Ahmed passed by the bookshop which is 500m away from their house.
- The time and distance where Hassan (in the bus) passed by Ahmed.
Give your answers to a reasonable degree of accuracy and justify this degree of accuracy
- Are there any other methods which can be used to answer question 2? Explain your answer.
- Which method would you prefer to use? Justify your answer.
- Suggest ways by which you can improve the first method in order to obtain more accurate results.
==================================================================================
End of Task
Best Wishes J