Files Required to Load: Question#5 : titanic.csv

Question#1:

Write a Python program to match a string that contains only upper and lowercase letters, numbers, and underscores.

In [0]:

import re

def text_match(text):

        patterns = ‘^[a-zA-Z0-9_]*$’

        #TO DO — Complete the Code

print(“text#1: ” + text_match(“The quick brown fox jumps over the lazy dog.”))

print(“text#2: ” + text_match(“Python_Exercises_1”))

text#1: No match found!

text#2: Found a match!

Question#2:

Write a Python program to remove all whitespaces from a string.

In [0]:

import re

text1 = ‘ Python    Exercises ‘

print(“Original string:”,text1)

print(“Without extra spaces:”) #TO DO — Complete the Code

Original string:  Python    Exercises

Without extra spaces: PythonExercises

Question#3:

Check null values in Pandas Dataframe to return False for NaN values.

In [0]:

# importing pandas as pd

import pandas as pd

# importing numpy as np

import numpy as np

# dictionary of lists

dict = {‘First Score’:[100, 90, np.nan, 95],

        ‘Second Score’: [30, 45, 56, np.nan],

        ‘Third Score’:[np.nan, 40, 80, 98]}

# creating a dataframe using dictionary

df = pd.DataFrame(dict)

#TO DO — Complete the Code

Out[12]:

First Score        Second Score             Third Score

0           True     True     False

1           True     True     True

2           False    True     True

3           True     False    True

Question#4:

Merge DataFrames df1 and df2 .

In [0]:

import numpy as np

import pandas as pd

df1 = pd.DataFrame({‘lkey’: [‘faa’, ‘baa’, ‘bzz’, ‘faa’],

                    ‘value’: [2, 3, 5, 7]})

df2 = pd.DataFrame({‘rkey’: [‘faa’, ‘baa’, ‘bzz’, ‘faa’],

                    ‘value’: [7, 8, 9, 10]})

#TO DO — Complete the Code

Out[11]:

lkey      value_x             rkey             value_y

0           faa        2           faa             7

1           faa        2           faa             10

2           faa        7           faa             7

3           faa        7           faa             10

4           baa       3           baa             8

5           bzz       5           bzz             9

Question#5:

Write a Pandas program to create a Pivot table with multiple indexes from the data set of titanic.csv

In [1]:

import pandas as pd

import numpy as np

df = pd.read_csv(‘titanic.csv’)

result =  #TO DO — Complete the Code

print(result)

              Unnamed: 15  adult_male  alone      fare  parch  pclass  sibsp  \

sex    age                                                                    

female 0.75           0.0         0.0    0.0   38.5166      2       6      4  

       1.00           0.0         0.0    0.0   26.8750      3       6      1  

       2.00           0.0         0.0    0.0  259.4750      9      15      9  

       3.00           0.0         0.0    0.0   62.6542      3       5      4  

       4.00           0.0         0.0    0.0  114.1417      6      13      4  

       5.00           0.0         0.0    1.0   90.8708      5      11      7  

       6.00           0.0         0.0    0.0   64.2750      3       5      4  

       7.00           0.0         0.0    0.0   26.2500      2       2      0  

       8.00           0.0         0.0    0.0   47.3250      3       5      3  

       9.00           0.0         0.0    0.0  108.7958      7      12     10  

       10.00          0.0         0.0    0.0   24.1500      2       3      0  

       11.00          0.0         0.0    0.0   31.2750      2       3      4  

       13.00          0.0         0.0    1.0   26.7292      1       5      0  

       14.00          0.0         0.0    1.0  169.1667      2       9      3  

       14.50          0.0         0.0    0.0   14.4542      0       3      1  

       15.00          0.0         0.0    2.0  241.0459      1      10      1  

       16.00          0.0         0.0    3.0  246.2625      4      12      5  

       17.00          0.0         0.0    3.0  210.7833      2      12      6  

       18.00          0.0         0.0    4.0  697.0167      9      31      6  

       19.00          0.0         0.0    3.0  215.0959      2      13      3  

       20.00          0.0         0.0    1.0   18.4875      0       6      1  

       21.00          0.0         0.0    4.0  410.4333      4      16      5  

       22.00          0.0         0.0    7.0  444.1084      6      26      3  

       23.00          0.0         0.0    3.0  405.5417      2      10      4  

       24.00          0.0         0.0    7.0  772.1708     15      31     10  

       25.00          0.0         0.0    1.0  223.2500      4      11      3  

       26.00          0.0         0.0    3.0  136.7292      1      12      2  

       27.00          0.0         0.0    2.0   76.8916      3      15      2  

       28.00          0.0         0.0    4.0  110.9458      1      16      3  

       29.00          0.0         0.0    2.0  320.6208      7      16      3  

…                   …         …    …       …    …     …    …  

male   42.00          0.0        10.0    6.0  216.1084      1      21      3  

       43.00          0.0         3.0    2.0   40.7500      1       8      1  

       44.00          0.0         6.0    3.0  156.1250      1      15      3  

       45.00          0.0         6.0    5.0  187.1000      0      10      1  

       45.50          0.0         2.0    2.0   35.7250      0       4      0  

       46.00          0.0         3.0    2.0  166.3750      0       4      1  

       47.00          0.0         7.0    7.0  181.3583      0      12      0  

       48.00          0.0         5.0    3.0  176.1334      0       8      2  

       49.00          0.0         4.0    1.0  256.9167      1       6      3  

       50.00          0.0         5.0    2.0  317.0250      0       8      4  

       51.00          0.0         6.0    5.0  123.3084      1      13      0  

       52.00          0.0         4.0    3.0  136.6500      1       6      1  

       54.00          0.0         5.0    3.0  195.1500      1       8      1  

       55.00          0.0         1.0    1.0   30.5000      0       1      0  

       55.50          0.0         1.0    1.0    8.0500      0       3      0  

       56.00          0.0         3.0    3.0   92.7458      0       3      0  

       57.00          0.0         1.0    1.0   12.3500      0       2      0  

       58.00          0.0         2.0    1.0  142.9750      2       2      0  

       59.00          0.0         2.0    2.0   20.7500      0       5      0  

       60.00          0.0         3.0    1.0  144.7500      2       4      2  

       61.00          0.0         3.0    3.0   72.0583      0       5      0  

       62.00          0.0         3.0    3.0   63.6000      0       4      0  

       64.00          0.0         2.0    1.0  289.0000      4       2      1  

       65.00          0.0         3.0    2.0   96.2792      1       5      0  

       66.00          0.0         1.0    1.0   10.5000      0       2      0  

       70.00          0.0         2.0    1.0   81.5000      1       3      1  

       70.50          0.0         1.0    1.0    7.7500      0       3      0  

       71.00          0.0         2.0    2.0   84.1584      0       2      0  

       74.00          0.0         1.0    1.0    7.7750      0       3      0  

       80.00          0.0         1.0    1.0   30.0000      0       1      0  

              survived 

sex    age             

female 0.75          2 

       1.00          2 

       2.00          2 

       3.00          1 

       4.00          5 

       5.00          4 

       6.00          1 

       7.00          1 

       8.00          1 

       9.00          0 

       10.00         0 

       11.00         0 

       13.00         2 

       14.00         3 

       14.50         0 

       15.00         4 

       16.00         5 

       17.00         5 

       18.00         8 

       19.00         7 

       20.00         0 

       21.00         4 

       22.00        10 

       23.00         4 

       24.00        14 

       25.00         2 

       26.00         3 

       27.00         5 

       28.00         5 

       29.00         5 

…                … 

male   42.00         3 

       43.00         0 

       44.00         1 

       45.00         2 

       45.50         0 

       46.00         0 

       47.00         0 

       48.00         3 

       49.00         2 

       50.00         1 

       51.00         1 

       52.00         1 

       54.00         0 

       55.00         0 

       55.50         0 

       56.00         1 

       57.00         0 

       58.00         0 

       59.00         0 

       60.00         1 

       61.00         0 

       62.00         1 

       64.00         0 

       65.00         0 

       66.00         0 

       70.00         0 

       70.50         0 

       71.00         0 

       74.00         0 

       80.00         1 

[145 rows x 8 columns]

Question#6:

Write a Python program to visualize the state/province wise Active cases of Novel Coronavirus (COVID-19) in USA.

In [ ]:

HW#3B Data Load Process

Files Required to Load: Question#3 : test.txt ; Question#4 : countries.csv

Question#1:

Write a Python program to convert JSON data to Python object.

In [1]:

import json

json_obj =  ‘{ “Name”:”David”, “Class”:”I”, “Age”:6 }’

python_obj = #TO DO — Complete the Code

print(“\nJSON data:”)

print(python_obj)

print(“\nName: “,python_obj[“Name”])

print(“Class: “,python_obj[“Class”])

print(“Age: “,python_obj[“Age”])

JSON data:

{‘Name’: ‘David’, ‘Class’: ‘I’, ‘Age’: 6}

Name:  David

Class:  I

Age:  6

Question#2:

Write a Python program to convert Python object to JSON data

In [2]:

import json

# a Python object (dict):

python_obj = {

  “name”: “David”,

  “class”:”I”,

  “age”: 6 

}

print(type(python_obj))

# convert into JSON:

j_data = #TO DO — Complete the Code

# result is a JSON string:

print(j_data)

<class ‘dict’>

{“name”: “David”, “class”: “I”, “age”: 6}

Question#3:

Write a python program to find the longest words in the provided text file.

In [3]:

def longest_word(filename):

    with open(filename, ‘r’) as infile:

              words = #TO DO — Complete the Code

     max_len = #TO DO — Complete the Code

               words = infile.read().split()

print(longest_word(‘test.txt’))

[‘general-purpose,’, ‘object-oriented,’]

Question#4:

Write a Python program to read a given CSV file having tab delimiter.

In [4]:

import csv

with open(‘countries.csv’, newline=”) as csvfile:

 data = #TO DO — Complete the Code

 for row in data:

   print(‘, ‘.join(row))

country_id country_name region_id

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

CH Switzerland 1

CN China 3

DE Germany 1

DK Denmark 1

EG Egypt 4

FR France 1

HK HongKong 3

IL Israel 4

IN India 3

IT Italy 1

JP Japan 3

KW Kuwait 4

MX Mexico 2

NG Nigeria 4

N Netherlands 1

SG Singapore 3

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

ZW Zimbabwe 4

Question#5:

Write a Python program to create a SQLite database and connect with the database and print the version of the SQLite database.

In [14]:

import sqlite3

try:

   sqlite_Connection = sqlite3.connect(‘temp.db’)

   conn = sqlite_Connection.cursor()

   print(“\nDatabase created and connected to SQLite.”)

   sqlite_select_Query = “select sqlite_version();”

   #TO DO — Complete the Code

   record = conn.fetchall()

   print(“\nSQLite Database Version is: “, record)

   conn.close()

except sqlite3.Error as error:

   print(“\nError while connecting to sqlite”, error)

finally:

   if (sqlite_Connection):

       sqlite_Connection.close()

       print(“\nThe SQLite connection is closed.”)

Database created and connected to SQLite.

SQLite Database Version is:  [(‘3.33.0’,)]

The SQLite connection is closed.

Question#6:

Write a Python program to create a table and insert some records in that table. Finally selects all rows from the table and display the records.

create a table CREATE TABLE salesman(salesman_id n(5), name char(30), city char(35), commission decimal(7,2));

insert some records INSERT INTO salesman VALUES(5001,’James Hoog’, ‘NY’, 0.15);

INSERT INTO salesman VALUES(5002,’Nail Knite’, ‘Paris’, 0.25);

INSERT INTO salesman VALUES(5003,’Pit Alex’, ‘London’, 0.15);

INSERT INTO salesman VALUES(5004,’Mc Lyon’, ‘Paris’, 0.35);

INSERT INTO salesman VALUES(5005,’Paul Adam’, ‘Rome’, 0.45);

display the records SELECT * FROM salesman;

In [15]:

import sqlite3

#TO DO — Complete the Code

print(“creating connecting …”)

conn  =  sqlite3.connect (‘mydatabase.db’ )

conn . close ()

print(“\nThe SQLite connection is closed.”)

creating connecting …

The SQLite connection is closed.

All papers are written by ENL (US, UK, AUSTRALIA) writers with vast experience in the field. We perform a quality assessment on all orders before submitting them.

Do you have an urgent order?  We have more than enough writers who will ensure that your order is delivered on time. 

We provide plagiarism reports for all our custom written papers. All papers are written from scratch.

24/7 Customer Support

Contact us anytime, any day, via any means if you need any help. You can use the Live Chat, email, or our provided phone number anytime.

We will not disclose the nature of our services or any information you provide to a third party.

Assignment Help Services
Money-Back Guarantee

Get your money back if your paper is not delivered on time or if your instructions are not followed.

We Guarantee the Best Grades
Assignment Help Services