Part 1

Question#1:

Suppose you are provided the Dataframe below. Compute the mean of the data1 column using the labels from key1.

NOte: access data1 and call groupby with the column (a Series) at key1

  • My Output may not match with your’s since we are using `np.random.randn(5)

`

In [0]:

import numpy as np

import pandas as pd

df = pd.DataFrame({‘key1’ : [‘a’, ‘a’, ‘b’, ‘b’, ‘a’],

                   ‘key2’ : [‘one’, ‘two’, ‘one’, ‘two’, ‘one’],

                   ‘data1’ : np.random.randn(5),

                   ‘data2’ : np.random.randn(5)})

df

Out[5]:

key1key2data1data2
0aone0.4954590.296270
1atwo-1.028313-1.014234
2bone0.8873140.518958
3btwo-1.381624-0.577313
4aone1.045025-0.325994

In [0]:

grouped =  #TO DO — Compute groupby

grouped  #TO DO — Compute mean

Out[9]:

key1

a    0.170724

b   -0.247155

Name: data1, dtype: float64

Question#2:

Derive the mean for the series below using Group by into states, years

In [0]:

states = np.array([‘Ohio’, ‘California’, ‘California’, ‘Ohio’, ‘Ohio’])

years = np.array([2005, 2005, 2006, 2005, 2006])

df[‘data1’] #TO DO — Compute groupby and mean

Out[12]:

California  2005   -1.028313

            2006    0.887314

Ohio        2005   -0.443082

            2006    1.045025

Name: data1, dtype: float64

In [0]:

Question#3:

Explain the code and output below

In [0]:

df[‘data1’].describe() #TO DO — Complete the Code

Out[14]:

count    5.000000

mean     0.003572

std      1.128177

min     -1.381624

25%     -1.028313

50%      0.495459

75%      0.887314

max      1.045025

Name: data1, dtype: float64

Question#4: Explain the code and output below

In [0]:

df[‘data2’].describe()

Out[15]:

count    5.000000

mean    -0.220463

std      0.628949

min     -1.014234

25%     -0.577313

50%     -0.325994

75%      0.296270

max      0.518958

Name: data2, dtype: float64

Reference(s) title & URL:

Part 2

Question#1:

Write a Python program to draw a line with suitable label in the x axis, y axis and a title.

In [0]:

import matplotlib.pyplot as plt
X = range(1, 50)
Y = [value * 3 for value in X]
print("Values of X:")
print(*range(1,50)) 
print("Values of Y (thrice of X):")
print(Y)
 # TO DO - Plot lines and/or markers to the Axes.
 #  TO DO - Set the x axis label of the current axis.
 #  TO DO - Set the y axis label of the current axis.
 #  TO DO - Set a title 
 #  TO DO - Display the figure.
Values of X:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
Values of Y (thrice of X):
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147]

Question#2:

Write a Python programming to display a bar chart of the popularity of programming Languages.

Sample data: Programming languages: Java, Python, PHP, JavaScript, C#, C++ Popularity: 22.2, 17.6, 8.8, 8, 7.7, 6.7

In [0]:

import matplotlib.pyplot as plt
x = ['Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++']
popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7]
x_pos = [i for i, _ in enumerate(x)]
plt.bar(x_pos, popularity, color='blue')
plt.xlabel("Languages")
plt.ylabel("Popularity")
plt.title("PopularitY of Programming Language\n" + "Worldwide, Oct 2017 compared to a year ago")
plt.xticks(x_pos, x)
# Turn on the grid
plt.minorticks_on()
plt.grid(which='major', linestyle='-', linewidth='0.5', color='red')
# Customize the minor grid
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
 #  TO DO - draw the plot

Question#3:

Write a Python programming to display a horizontal bar chart of the popularity of programming Languages.

In [0]:

import matplotlib.pyplot as plt
x = ['Java', 'Python', 'PHP', 'JS', 'C#', 'C++']
popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7]
x_pos = [i for i, _ in enumerate(x)]
plt.barh(x_pos, popularity, color='green')
plt.xlabel("Popularity")
plt.ylabel("Languages")
plt.title("PopularitY of Programming Language\n" + "Worldwide, Oct 2017 compared to a year ago")
plt.yticks(x_pos, x)
# Turn on the grid
plt.minorticks_on()
plt.grid(which='major', linestyle='-', linewidth='0.5', color='red')
# Customize the minor grid
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
#  TO DO - draw the plot

Question#4:

Write a Python programming to display a bar chart of the popularity of programming Languages. Use different color for each bar

In [0]:

import matplotlib.pyplot as plt
x = ['Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++']
popularity = [22.2, 17.6, 8.8, 8, 7.7, 6.7]
x_pos = [i for i, _ in enumerate(x)]
plt.bar(x_pos, popularity, color=['red', 'black', 'green', 'blue', 'yellow', 'cyan'])
plt.xlabel("Languages")
plt.ylabel("Popularity")
plt.title("PopularitY of Programming Language\n" + "Worldwide, Oct 2017 compared to a year ago")
plt.xticks(x_pos, x)
# Turn on the grid
plt.minorticks_on()
plt.grid(which='major', linestyle='-', linewidth='0.5', color='red')
# Customize the minor grid
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
 #  TO DO - draw the plot

Question#5:

Write a Python programming to create a pie chart of the popularity of programming Languages.

Sample data: Programming languages: Java, Python, PHP, JavaScript, C#, C++ Popularity: 22.2, 17.6, 8.8, 8, 7.7, 6.7

In [0]:

import matplotlib.pyplot as plt
# Data to plot
languages = 'Java', 'Python', 'PHP', 'JavaScript', 'C#', 'C++'
popuratity = [22.2, 17.6, 8.8, 8, 7.7, 6.7]
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b"]
# explode 1st slice
explode = (0.1, 0, 0, 0,0,0)  
# Plot
plt.pie(popuratity, explode=explode, labels=languages, colors=colors,
autopct='%1.1f%%', shadow=True, startangle=140)
plt.axis('equal')
 #  TO DO - draw the plot

Question#6:

Population pyramid can be used to show either the distribution of the groups ordered by the volumne. Or it can also be used to show the stage-by-stage filtering of the population as it is used below to show how many people pass through each stage of a marketing funnel.

In [0]:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Read data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/email_campaign_funnel.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
group_col = 'Gender'
order_of_bars = df.Stage.unique()[::-1]
colors = [plt.cm.Spectral(i/float(len(df[group_col].unique())-1)) for i in range(len(df[group_col].unique()))]
for c, group in zip(colors, df[group_col].unique()):
    sns.barplot(x='Users', y='Stage', data=df.loc[df[group_col]==group, :], order=order_of_bars, color=c, label=group)
  
 #  TO DO - draw the plot  xlabel
 #  TO DO - draw the plot  ylabel
plt.yticks(fontsize=12)
 #  TO DO -  plot the title
 #  TO DO -  plot the legend
 #  TO DO -  plot the graph

Reference(s) title & URL:

All papers are written by ENL (US, UK, AUSTRALIA) writers with vast experience in the field. We perform a quality assessment on all orders before submitting them.

Do you have an urgent order?  We have more than enough writers who will ensure that your order is delivered on time. 

We provide plagiarism reports for all our custom written papers. All papers are written from scratch.

24/7 Customer Support

Contact us anytime, any day, via any means if you need any help. You can use the Live Chat, email, or our provided phone number anytime.

We will not disclose the nature of our services or any information you provide to a third party.

Assignment Help Services
Money-Back Guarantee

Get your money back if your paper is not delivered on time or if your instructions are not followed.

We Guarantee the Best Grades
Assignment Help Services